| | Working Scientifically | |------------|--| | Plan | Ask simple questions when prompted Suggest ways of answering a question | | Dσ | Make relevant observations using
simple equipment Conduct simple
tests, with support
Identify and classify with guidance | | Record | Gather and record data | | Review | Recognise findings
Use their observations and ideas to
suggest answers to simple
questions | | Vocahulary | Questions, answers, equipment,
gather, measure, record, results,
sort, group, test, explore, observe,
compare, describe, similar/ities,
different/ces, beaker, pipette,
syringe | #### Science Yearly Overview working scientifically expectations Intent - We ask questions - We explore and investigate - We think scientifically - We record scientifically - We link learning to real life # Our curriculum is well sequenced and progressive building upon prior knowledge. **Implementation** We investigate scientifically with <u>a</u> minimum of two practical investigations per half term. These deliver scientific knowledge and foster the ability to work scientifically. The result is a meaningful learning journey where the majority of pupils retain the powerful knowledge ensuring they are ready for the next stage in their learning journey. **Impact** | | Year Group | Autumn 1 | Autumn 2 | Spring 1 | Spring 2 | Summer 1 | Summer 2 | |---|----------------|-----------------------|---|-----------------------------|-------------------------------------|-------------|---| | | Year 1 | Everyday
materials | Seasonal
Changes: Autumn
& winter | Animals including
humans | Scientific Enquiry:
Science Week | Plants | Seasonal
changes:
Spring to
Summer | | | Working | | | | | | | | | scientifically | | Review | | | Plan | | | | Assessment | Do | (answer | Record | Do & Record | (suggest | Record | | J | Focus | (observation) | questions) | (classification) | (gather) | ways to do) | (data) | | | | Science Learning Sequence | | | | | | |---|-----------------|---------------------------------|---|--------------------------|---------------------|--|--| | 3 | Pre-unit | Share knowledge organisers | Lessons to deliver information on knowledge | End of unit assessment | Summative teacher | | | | | assessment | and learning journey checklists | organisers through the learning journey | | assessment | | | | > | | | | (quiz, poster, KWL grid) | & Skills assessment | | | | • | (KWL grid, quiz | Recap Prior knowledge | Must include 2x investigations | | on Learning Journey | | | | | etc) | | | | Checklist and | | | | | | | | | foundation tracker | | | | Plan | Ask simple | |--------|----------------------| | | questions | | | Recognise that | | | questions can be | | | answered in | | | different ways | | Dσ | Observe closely, | | | using simple | | | equipment | | | Perform simple tests | | | Identify and | | | classify | | Record | Record and | | | communicate their | | | findings in a range | | | of ways and begin | | | to use simple | | | scientific language | | | Gather and record | | | data to help answer | | | questions | | | | | Review | Use their | | | observations and | | | ideas to suggest | | | answers to simple | | | questions . | | | | ## Science Yearly Overview | Intent | Implementation | Impact | |--|--|--| | We have high ambitions for all pupils in Science. We deliver our curriculum through our five core principles: | Our curriculum is well sequenced and progressive building upon prior knowledge. | The result is a meaningful
learning journey where the
majority of pupils retain the
powerful knowledge ensuring | | We ask questions We explore and investigate We think scientifically We record scientifically We link learning to real life | We investigate scientifically with <u>a</u> minimum of two practical investigations per half term. These deliver scientific knowledge and foster the ability to work scientifically. | they are ready for the next
stage in their learning journey. | | er | Autumn 1 | Autumn 2 | Spring 1 | Spring 2 | Summer 1 | Summer 2 | |----|--------------------------|--------------------------------------|------------------------------------|-------------------------------------|------------------|-------------------------------------| | | Animals including humans | Scientific enquiry:
Investigating | Everyday Materials and their uses. | Scientific enquiry:
Science week | Plants | Living things and
their habitats | | | | Do | Do | | Plan | | | | Record | (observation & | (use equipment and | Do & Record | (suggest ways to | Review | | , | (flow diagrams) | ideas) | observe) | (gather) | do) | (ideas) | | Science Learning Sequence | | | | | | | |---------------------------|---------------------------------|---|--------------------------|---------------------|--|--| | Pre-unit | Share knowledge organisers | End of unit assessment | Summative teacher | | | | | assessment | and learning journey checklists | organisers through the learning journey | | assessment | | | | | | | (quiz, poster, KWL grid) | & Skills assessment | | | | (KWL grid, quiz | Recap Prior knowledge | Must include 2x investigations | | on Learning Journey | | | | etc) | | | | Checklist and | | | | | | | | foundation tracker | | | | Plan | Ask relevant questions when prompted Use different types of scientific enquiry to answer them. Set up simple and practical enquiries, comparative and fair tests with some support. | |--------|---| | Dσ | Make systematic and careful observations, using simple equipment Use standard units when taking measurements | | Record | With modelling and quidance, gather, record, | classify and present data in a variety of ways to help to answer questions. With prompting, use various #### Year 3 ### Science Yearly Overview working scientifically expectations | Intent | Implementation | Impact | |--|--|--| | We have high ambitions for all pupils in Science. We deliver our curriculum through our five core principles: | Our curriculum is well sequenced and progressive building upon prior knowledge. | The result is a meaningful
learning journey where the
majority of pupils retain the
powerful knowledge ensuring | | We ask questions We explore and investigate We think scientifically We record scientifically We link learning to real life | We investigate scientifically with a minimum of two practical investigations per half term. These deliver scientific knowledge and foster the ability to work scientifically. | they are ready for the next
stage in their learning journey. | | ways of recording, grouping
and displaying evidence | Year 3: Working scientifically focus in practical work | | | | | | | |---|--|------------------|----------|--------------------|-------------------|-----------------|--| | and suggest how findings | Autumn 1 | Autumn 2 | Spring 1 | Spring 2 | Summer 1 | Summer 2 | | | may be tabulated | Rocks | Forces and | Light | Scientific enquiry | Animals Including | Plants | | | With prompting, suggest conclusions from enquiries. Suggest how findings could be reported. | | Magnets | | (Science week) | Humans | | | | Suggest possible
improvements
or further questions to
investigate | Paviou | Do (observation) | Dlan | Do & Record | Pagard (placeify) | December (deta) | | | | Review | Do (observation) | Plan | (gather) | Record (classify) | Record (data) | | Review | | Science Learning Sequence | | | | | | |-----------------|---------------------------------|---|--------------------------|---------------------|--|--| | Pre-unit | Share knowledge organisers | Lessons to deliver information on knowledge | End of unit assessment | Summative teacher | | | | assessment | and learning journey checklists | organisers through the learning journey | | assessment | | | | | | | (quiz, poster, KWL grid) | & Skills assessment | | | | (KWL grid, quiz | Recap Prior knowledge | Must include 2x investigations | | on Learning Journey | | | | etc) | | | | Checklist and | | | | | | | | foundation tracker | | | | | Year 4 | |--------|---| | Plan | Ask relevant questions. Use different types of scientific enquiries to answer their questions. Set up simple and practical enquiries, comparative and fair tests | | Dσ | Make systematic and careful observations using a range of equipment, including thermometers and data loggers. Take accurate measurements using standard units, where appropriate | | Record | Gather, record, classify and present data in a variety of ways to help to answer questions Record findings using simple scientific language, drawings and labelled diagrams Record findings using keys, bar charts, and tables. | | Review | Report on findings from enquiries, including oral and written explanations, of results and conclusions Report on findings from enquiries using displays or presentations. | Identify differences, similarities or changes related to simple scientific predictions for new values, suggest improvements and raise further ideas and processes Use straightforward scientific evidence to answer questions or to support their findings. Use results to draw simple conclusions, make questions Year 4 #### Science Yearly Overview | Intent | Implementation | Impact | |--|--|--| | We have high ambitions for all
pupils in Science. We deliver
our curriculum through our five
core principles: | Our curriculum is well sequenced and progressive building upon prior knowledge. | The result is a meaningful
learning journey where the
majority of pupils retain the
powerful knowledge ensuring | | We ask questions We explore and investigate We think scientifically We record scientifically We link learning to real life | We investigate scientifically with <u>a</u> minimum of two practical investigations per half term. These deliver scientific knowledge and foster the ability to work scientifically. | they are ready for the next
stage in their learning journey. | | | Year 4: Working scientifically focus in practical work | | | | | | | |----------|--|-----------------------------|---|---|-------------|--|--| | Autumn 1 | Autumn 2 | Spring 1 | Spring 2 | Summer 1 | Summer 2 | | | | Sound | States of Matter | Animals including
humans | Science Week
Working
Scientifically | Living
things and
their
habitats | Electricity | | | | Review | Do (observation) | Record
(classification) | Do & Record
(gather) | Review | Plan | | | | | | Science Learning Sequence | | | | | | |----|-----------------|---------------------------------|---|--------------------------|---------------------|--|--| | | Pre-unit | Share knowledge organisers | Lessons to deliver information on knowledge | End of unit assessment | Summative teacher | | | | | assessment | and learning journey checklists | organisers through the learning journey | | assessment | | | | i. | | | | (quiz, poster, KWL grid) | & Skills assessment | | | | | (KWL grid, quiz | Recap Prior knowledge | Must include 2x investigations | | on Learning Journey | | | | | etc) | | | | Checklist and | | | | | | | | | foundation tracker | | | | | Year 5 | |--------|---| | Plan | Plan different types
of scientific
enquiries to answer
questions. With
prompting,
recognise and
control variables
where necessary | | Dσ | Select, with prompting, and use appropriate equipment to take readings. Take precise measurements using standard units. Begin to understand the need for repeat readings. | | Record | Take and process repeat readings Record data and results. Record data using labelled diagrams, keys, tables and charts Use line graphs to record data | | Review | Report and present findings from enquiries, including conclusions and, with prompting, suggest causal relationships With support, present findings from enquiries orally and in writing Suggest further comparative or fair tests | ## Science Yearly Overview | | Intent | Implementation | Impact | |----------|--|---|---| | pı
σι | le have high ambitions for all upils in Science. We deliver ur curriculum through our five ore principles: | Our curriculum is well sequenced and progressive building upon prior knowledge. | The result is a meaningful learning journey where the majority of pupils retain the powerful knowledge ensuring | | | We ask questions We explore and investigate We think scientifically We record scientifically We link learning to real life | We investigate scientifically with a minimum of two practical investigations per half term. These deliver scientific knowledge and foster the ability to work scientifically. | they are ready for the next
stage in their learning journey. | | Year 5: Working scientifically focus in practical work | | | | | | | | | |--|-------------------------------------|---|--|-----------------------------|--------------------------------|--|--|--| | Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2 | | | | | | | | | | Forces | Living things and
their habitats | Properties and
changes of
materials | Working Scientifically Investigations 'awe & wonder' | Earth and Space | Animals
including
humans | | | | | Record (data) | Review | Plan | Do & Record
(gather) | Review
(written sources) | Review | | | | | 1 | | Science Learning Sequence | | | | | | | |---|-----------------|---------------------------------|---|--------------------------|---------------------|--|--|--| | Þ | Pre-unit | Share knowledge organisers | End of unit assessment | Summative teacher | | | | | | | assessment | and learning journey checklists | organisers through the learning journey | | assessment | | | | | | | | | (quiz, poster, KWL grid) | & Skills assessment | | | | | | (KWL grid, quiz | Recap Prior knowledge | Must include 2x investigations | | on Learning Journey | | | | | | etc) | | | | Checklist and | | | | | | | | | | foundation tracker | | | | | Plan | Plan different types of | | | | | | |--------|--|--|--|--|--|--| | | scientific enquiries to | | | | | | | | answer questions.
Recognise and control | | | | | | | | Recognise and control | | | | | | | | variables where | | | | | | | | necessary. Use a range of scientific equipment | | | | | | | Dσ | | | | | | | | | | | | | | | | | to take | | | | | | | | measurements | | | | | | | | Take measurements
with
increasing accuracy | | | | | | | | with
increasing accuracy | | | | | | | | increasing accuracy
and precision. Take | | | | | | | | | | | | | | | | repeat readings when | | | | | | | | appropriate. | | | | | | | Record | Record data and | | | | | | | | results of increasing | | | | | | | | complexity using | | | | | | | | scientific diagrams | | | | | | | | and labels, | | | | | | | | classification keys, | | | | | | | | tables, bar charts and | | | | | | | | line graphs | | | | | | | Review | Report and present | | | | | | | | findings from | | | | | | | | enquiries, including | | | | | | | | conclusions and | | | | | | | | causal relationships | | | | | | | | Report and presents | | | | | | | | findings from | | | | | | | | enquiries in oral and | | | | | | | | written forms such as | | | | | | | | displays and other | | | | | | | | presentation | | | | | | | | Report and present | | | | | | | | findings from
enquiries, including | | | | | | | | | | | | | | | | explanations of, and
degree of, trust in | | | | | | | | results. Identify | | | | | | | | scientific evidence | | | | | | | | that has been used | | | | | | | | to support or refute | | | | | | | | ideas or arguments. | | | | | | | | Use test results to | | | | | | | | make predictions to | | | | | | | | set up further | | | | | | | | comparative and fair | | | | | | | | tests | | | | | | | | | | | | | | ### Year 6 ## Science Yearly Overview | Intent | Implementation | Impact | |--|--|--| | We have high ambitions for all pupils in Science. We deliver our curriculum through our five core principles: | Our curriculum is well
sequenced and progressive
building upon prior
knowledge. | The result is a meaningful
learning journey where the
majority of pupils retain the
powerful knowledge ensuring | | We ask questions We explore and investigate We think scientifically We record scientifically We link learning to real life | We investigate scientifically with <u>a</u> minimum of two practical investigations per half term. These deliver scientific knowledge and foster the ability to work scientifically. | they are ready for the next
stage in their learning journey. | | d | | Year 6: Working scientifically focus in practical work | | | | | | | | |---|----------|--|--|--|--------------------------|---|--|--|--| | ┨ | Autumn 1 | Autumn 2 | Spring 1 | Spring 2 | Summer 1 | Summer 2 | | | | | | Light | Electricity | Evolution and inheritance Scientific Enquiry: Science Week | Scientific
Enquiry:
Science Week | Animals including humans | Living things and
their habitats
including
Micro-organisms | | | | | 5 | Plan | Do | Review | Do & Record
(gather) | Record (classify) | Record
(data / graphs) | | | | | | Science Learning Sequence | | | | | | | | |-----------------|--|---|--------------------------|---------------------|--|--|--|--| | Pre-unit | Pre-unit Share knowledge organisers Lessons to deliver information on knowledge End of unit assessment S | | | | | | | | | assessment | and learning journey checklists | organisers through the learning journey | | assessment | | | | | | | | | (quiz, poster, KWL grid) | & Skills assessment | | | | | | (KWL grid, quiz | Recap Prior knowledge | Must include 2x investigations | | on Learning Journey | | | | | | etc) | | | | Checklist and | | | | | | | | | | foundation tracker | | | | |